

Chapter 18

MVVM

Can you remember your earliest experiences with programming? It’s likely that your main goal was just

getting the program working, and then getting it working correctly. You probably didn’t think much

about the organization or structure of the program. That was something that came later.

The computer industry as a whole has gone through a similar evolution. As developers, we all now

realize that once an application begins growing in size, it’s usually a good idea to impose some kind of

structure or architecture on the code. Experience with this process suggests that it’s often best to start

thinking about this architecture perhaps before any code is written at all. In most cases, a desirable

program structure strives for a “separation of concerns” through which different pieces of the program

focus on different sorts of tasks.

In a graphically interactive program, one obvious technique is to separate the user interface from

underlying non-user-interface logic, sometimes called business logic. The first formal description of

such an architecture for graphical user interfaces was called Model-View-Controller (MVC), but this ar-

chitecture has since given rise to others derived from it.

To some extent, the nature of the programming interface itself influences the application architec-

ture. For example, a programming interface that includes a markup language with data bindings might

suggest a particular way to structure an application.

There is indeed an architectural model that was designed specifically with XAML in mind. This is

known as Model-View-ViewModel or MVVM. This chapter covers the basics of MVVM (including the

command interface), but you’ll see more about MVVM in the next chapter, which covers collection

views. Also, some other features of Xamarin.Forms are often used in conjunction with MVVM; these

features include triggers and behaviors, and they are the subject of Chapter 23.

MVVM interrelationships

MVVM divides an application into three layers:

 The Model provides underlying data, sometimes involving file or web accesses.

 The ViewModel connects the Model and the View. It helps to manage the data from the Model

to make it more amenable to the View, and vice versa.

 The View is the user interface or presentation layer, generally implemented in XAML.

The Model is ignorant of the ViewModel. In other words, the Model knows nothing about the public

Chapter 18 MVVM 492

properties and methods of the ViewModel, and certainly nothing about its internal workings. Similarly,

the ViewModel is ignorant of the View. If all the communication between the three layers occurs

through method calls and property accesses, then calls in only one direction are allowed. The View only

makes calls into the ViewModel or accesses properties of the ViewModel, and the ViewModel similarly

only makes calls into the Model or accesses Model properties:

These method calls allow the View to get information from the ViewModel, which in turn gets infor-

mation from the Model.

In modern environments, however, data is often dynamic. Often the Model will obtain more or

newer data that must be communicated to the ViewModel and eventually to the View. For this reason,

the View can attach handlers to events that are implemented in the ViewModel, and the ViewModel

can attach handlers to events defined by the Model. This allows two-way communication while contin-

uing to hide the View from the ViewModel, and the ViewModel from the Model:

MVVM was designed to take advantage of XAML and particularly XAML-based data bindings. Gen-

erally, the View is a page class that uses XAML to construct the user interface. Therefore, the connec-

tion between the View and the ViewModel consists largely—and perhaps exclusively—of XAML-based

data bindings:

Programmers who are very passionate about MVVM often have an informal goal of expressing all

interactions between the View and the ViewModel in a page class with XAML-based data bindings, and

in the process reducing the code in the page’s code-behind file to a simple InitializeComponent

call. This goal is difficult to achieve in real-life programming, but it’s a pleasure when it happens.

Small programs—such as those in a book like this—often become larger when MVVM is introduced.

Do not let this discourage your use of MVVM! Use the examples here to help you determine how

Chapter 18 MVVM 493

MVVM can be used in a larger program, and you’ll eventually see that it helps enormously in architect-

ing your applications.

ViewModels and data binding

In many fairly simple demonstrations of MVVM, the Model is absent or only implied, and the View-

Model contains all the business logic. The View and the ViewModel communicate through XAML-

based data bindings. The visual elements in the View are data-binding targets, and properties in the

ViewModel are data-binding sources.

Ideally, a ViewModel should be independent of any particular platform. This independence allows

ViewModels to be shared among other XAML-based environments (such as Windows) in addition to

Xamarin.Forms. For this reason, you should try to avoid using the following statement in your View-

Models:

using Xamarin.Forms;

That rule is frequently broken in this chapter! One of the ViewModels is based on the Xamarin.Forms

Color structure, and another uses Device.StartTimer. So let’s call the avoidance of anything spe-

cific to Xamarin.Forms in the ViewModel a “suggestion” rather than a “rule.”

Visual elements in the View qualify as data-binding targets because the properties of these visual

elements are backed by bindable properties. To be a data-binding source, a ViewModel must imple-

ment a notification protocol to signal when a property in the ViewModel has changed. This notification

protocol is the INotifyPropertyChanged interface, which is defined in the System.Component-

Model namespace very simply with just one event:

public interface INotifyPropertyChanged

{

 event PropertyChangedEventHandler PropertyChanged;

}

The INotifyPropertyChanged interface is so central to MVVM that in informal discussions the inter-

face is often abbreviated INPC.

The PropertyChanged event in the INotifyPropertyChanged interface is of type Property-

Changed-EventHandler. A handler for this PropertyChanged event handler gets an instance of the

PropertyChangedEventArgs class, which defines a single property named PropertyName of type

string indicating what property in the ViewModel has changed. The event handler can then access

that property.

A class that implements INotifyPropertyChanged should fire a PropertyChanged event when-

ever a public property changes, but the class should not fire the event when the property is merely set

but not changed.

Chapter 18 MVVM 494

Some classes define immutable properties—properties that are initialized in the constructor and

then never change. Those properties do not need to fire PropertyChanged events because a Prop-

ertyChanged handler can be attached only after the code in the constructor finishes, and the immuta-

ble properties never change after that time.

In theory, a ViewModel class can be derived from BindableObject and implement its public prop-

erties as BindableProperty objects. BindableObject implements INotifyPropertyChanged and

automatically fires a PropertyChanged event when any property backed by a BindableProperty

changes. But deriving from BindableObject is overkill for a ViewModel. Because BindableObject

and BindableProperty are specific to Xamarin.Forms, such a ViewModel is no longer platform inde-

pendent, and the technique provides no real advantages over a simpler implementation of INotify-

PropertyChanged.

A ViewModel clock
Suppose you are writing a program that needs access to the current date and time, and you’d like to

use that information through data bindings. The .NET base class library provides date and time infor-

mation through the DateTime structure. To get the current date and time, just access the

DateTime.Now property. That’s the customary way to write a clock application.

But for data-binding purposes, DateTime has a severe flaw: It provides just static information with

no notification when the date or time has changed.

In the context of MVVM, the DateTime structure perhaps qualifies as a Model in the sense that

DateTime provides all the data we need but not in a form that’s conducive to data bindings. It’s neces-

sary to write a ViewModel that makes use of DateTime but provides notifications when the date or

time has changed.

The Xamarin.FormsBook.Toolkit library contains the DateTimeViewModel class shown below.

The class has only one property, which is named DateTime of type DateTime, but this property dy-

namically changes as a result of frequent calls to DateTime.Now in a Device.StartTimer callback.

Notice that the DateTimeViewModel class is based on the INotifyPropertyChanged interface

and includes a using directive for the System.ComponentModel namespace that defines this inter-

face. To implement this interface, the class defines a public event named PropertyChanged.

Watch out: It is very easy to define a PropertyChanged event in your class without explicitly speci-

fying that the class implements INotifyPropertyChanged! The notifications will be ignored if you

don’t explicitly specify that the class is based on the INotifyPropertyChanged interface:

using System;

using System.ComponentModel;

using Xamarin.Forms;

namespace Xamarin.FormsBook.Toolkit

{

 public class DateTimeViewModel : INotifyPropertyChanged

Chapter 18 MVVM 495

 {

 DateTime dateTime = DateTime.Now;

 public event PropertyChangedEventHandler PropertyChanged;

 public DateTimeViewModel()

 {

 Device.StartTimer(TimeSpan.FromMilliseconds(15), OnTimerTick);

 }

 bool OnTimerTick()

 {

 DateTime = DateTime.Now;

 return true;

 }

 public DateTime DateTime

 {

 private set

 {

 if (dateTime != value)

 {

 dateTime = value;

 // Fire the event.

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs("DateTime"));

 }

 }

 }

 get

 {

 return dateTime;

 }

 }

 }

}

The only public property in this class is called DateTime of type DateTime, and it is associated with

a private backing field named dateTime. Public properties in ViewModels usually have private backing

fields. The set accessor of the DateTime property is private to the class, and it’s updated every 15 mil-

liseconds from the timer callback.

Other than that, the set accessor is constructed in a very standard way for ViewModels: It first

checks whether the value being set to the property is different from the dateTime backing field. If not,

it sets that backing field from the incoming value and fires the PropertyChanged handler with the

name of the property. It is considered very bad practice to fire the PropertyChanged handler if the

Chapter 18 MVVM 496

property is merely being set to its existing value, and it might even lead to problems involving infinite

cycles of recursive property settings in two-way bindings.

This is the code in the set accessor that fires the event:

PropertyChangedEventHandler handler = PropertyChanged;

if (handler != null)

{

 handler(this, new PropertyChangedEventArgs("DateTime"));

}

That form is preferable to code such as this, which doesn’t save the handler in a separate variable:

if (PropertyChanged != null)

{

 PropertyChanged(this, new PropertyChangedEventArgs("DateTime"));

}

In a multithreaded environment, a PropertyChanged handler might be detached between the if

statement that checks for a null value and the actual firing of the event. Saving the handler in a sepa-

rate variable prevents that from causing a problem, so it’s a good habit to adopt even if you’re not yet

working in a multithreaded environment.

The get accessor simply returns the dateTime backing field.

The MvvmClock program demonstrates how the DateTimeViewModel class is capable of provid-

ing updated date and time information to the user interface through data bindings:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="MvvmClock.MvvmClockPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <toolkit:DateTimeViewModel x:Key="dateTimeViewModel" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout VerticalOptions="Center">

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

Chapter 18 MVVM 497

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime.Millisecond,

 StringFormat='The milliseconds are {0}'}" />

 </StackLayout>

</ContentPage>

The Resources section for the page instantiates the DateTimeViewModel and also defines an implicit

Style for the Label.

The first of the six Label elements sets its Text property to a Binding object that involves the ac-

tual .NET DateTime structure. The Source property of that binding is an x:Static markup extension

that references the static DateTime.Now property to obtain the date and time when the program first

starts running. No Path is required in this binding. The “F” formatting specification is for the full

date/time pattern, with long versions of the date and time strings. Although this Label displays the

date and time when the program starts up, it will never get updated.

The final four data bindings will be updated. In these data bindings, the Source property is set to a

StaticResource markup extension that references the DateTimeViewModel object. The Path is set

to various subproperties of the DateTime property of that ViewModel. Behind the scenes, the binding

infrastructure attaches a handler on the PropertyChanged event in the DateTimeViewModel. This

handler checks for a change in the DateTime property and updates the Text property of the Label

whenever that property changes.

The code-behind file is empty except for an InitializeComponent call. The data bindings of the

final four labels display an updated time that changes as fast as the video refresh rate:

Chapter 18 MVVM 498

The markup in this XAML file can be simplified by setting the BindingContext property of the

StackLayout to a StaticResource markup extension that references the ViewModel. That Bind-

ingContext is propagated through the visual tree so that you can remove the Source settings on the

final four Label elements:

<StackLayout VerticalOptions="Center"

 BindingContext="{StaticResource dateTimeViewModel}">

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Path=DateTime.Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Path=DateTime.Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Path=DateTime.Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Path=DateTime.Millisecond,

 StringFormat='The milliseconds are {0}'}" />

</StackLayout>

The Binding on the first Label overrides that BindingContext with its own Source setting.

You can even remove the DateTimeViewModel item from the ResourceDictionary and instanti-

ate it right in the StackLayout between BindingContext property-element tags:

Chapter 18 MVVM 499

<StackLayout VerticalOptions="Center">

 <StackLayout.BindingContext>

 <toolkit:DateTimeViewModel />

 </StackLayout.BindingContext>

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Path=DateTime.Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Path=DateTime.Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Path=DateTime.Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Path=DateTime.Millisecond,

 StringFormat='The milliseconds are {0}'}" />

</StackLayout>

Or, you can set the BindingContext property of the StackLayout to a Binding that includes the

DateTime property. The BindingContext then becomes the DateTime value, which allows the indi-

vidual bindings to simply reference properties of the .NET DateTime structure:

<StackLayout VerticalOptions="Center"

 BindingContext="{Binding Source={StaticResource dateTimeViewModel},

 Path=DateTime}">

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Path=Hour,

 StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Path=Minute,

 StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Path=Second,

 StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Path=Millisecond,

 StringFormat='The milliseconds are {0}'}" />

</StackLayout>

You might have doubts that this will work! Behind the scenes, a data binding normally installs a Prop-

ertyChanged event handler and watches for particular properties being changed, but it can’t in this

case because the source of the data binding is a DateTime value, and DateTime doesn’t implement

INotifyPropertyChanged. However, the BindingContext of these Label elements changes with

Chapter 18 MVVM 500

each change to the DateTime property in the ViewModel, so the binding infrastructure accesses new

values of these properties at that time.

As the individual bindings on the Text properties decrease in length and complexity, you can re-

move the Path attribute name and put everything on one line and nobody will be confused:

<StackLayout VerticalOptions="Center">

 <StackLayout.BindingContext>

 <Binding Path="DateTime">

 <Binding.Source>

 <toolkit:DateTimeViewModel />

 </Binding.Source>

 </Binding>

 </StackLayout.BindingContext>

 <Label Text="{Binding Source={x:Static sys:DateTime.Now},

 StringFormat='This program started at {0:F}'}" />

 <Label Text="But now..." />

 <Label Text="{Binding Hour, StringFormat='The hour is {0}'}" />

 <Label Text="{Binding Minute, StringFormat='The minute is {0}'}" />

 <Label Text="{Binding Second, StringFormat='The seconds are {0}'}" />

 <Label Text="{Binding Millisecond, StringFormat='The milliseconds are {0}'}" />

</StackLayout>

In future programs in this book, the individual bindings will mostly be as short and as elegant as

possible.

Interactive properties in a ViewModel
The second example of a ViewModel does something so basic that you’d never write a ViewModel for

this purpose. The SimpleMultiplierViewModel class simply multiplies two numbers together. But

it’s a good example for demonstrating the overhead and mechanics of a ViewModel that has multiple

interactive properties. (And although you’d never write a ViewModel for multiplying two numbers to-

gether, you might write a ViewModel for solving quadratic equations or something much more

complex.)

The SimpleMultiplierViewModel class is part of the SimpleMultiplier project:

using System;

using System.ComponentModel;

namespace SimpleMultiplier

{

 class SimpleMultiplierViewModel : INotifyPropertyChanged

 {

 double multiplicand, multiplier, product;

 public event PropertyChangedEventHandler PropertyChanged;

Chapter 18 MVVM 501

 public double Multiplicand

 {

 set

 {

 if (multiplicand != value)

 {

 multiplicand = value;

 OnPropertyChanged("Multiplicand");

 UpdateProduct();

 }

 }

 get

 {

 return multiplicand;

 }

 }

 public double Multiplier

 {

 set

 {

 if (multiplier != value)

 {

 multiplier = value;

 OnPropertyChanged("Multiplier");

 UpdateProduct();

 }

 }

 get

 {

 return multiplier;

 }

 }

 public double Product

 {

 protected set

 {

 if (product != value)

 {

 product = value;

 OnPropertyChanged("Product");

 }

 }

 get

 {

 return product;

 }

 }

 void UpdateProduct()

 {

 Product = Multiplicand * Multiplier;

 }

Chapter 18 MVVM 502

 protected void OnPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

}

The class defines three public properties of type double, named Multiplicand, Multiplier, and

Product. Each property is backed by a private field. The set and get accessors of the first two proper-

ties are public, but the set accessor of the Product property is protected to prevent it from being set

outside the class while still allowing a descendant class to change it.

The set accessor of each property begins by checking whether the property value is actually chang-

ing, and if so, it sets the backing field to that value and calls a method named OnPropertyChanged

with that property name.

The INotifyPropertyChanged interface does not require an OnPropertyChanged method, but

ViewModel classes often include one to cut down the code repetition. It’s usually defined as pro-

tected in case you need to derive one ViewModel from another and fire the event in the derived

class. Later in this chapter, you’ll see techniques to cut down the code repetition in INotifyProper-

tyChanged classes even more.

The set accessors for both the Multiplicand and Multiplier properties conclude by calling the

UpdateProduct method. This is the method that performs the job of multiplying the values of the two

properties and setting a new value for the Product property, which then fires its own Property-

Changed event.

Here’s the XAML file that makes use of this ViewModel:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:SimpleMultiplier"

 x:Class="SimpleMultiplier.SimpleMultiplierPage"

 Padding="10, 0">

 <ContentPage.Resources>

 <ResourceDictionary>

 <local:SimpleMultiplierViewModel x:Key="viewModel" />

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

Chapter 18 MVVM 503

 <StackLayout BindingContext="{StaticResource viewModel}">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Slider Value="{Binding Multiplier}" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Label Text="{Binding Multiplicand, StringFormat='{0:F3}'}" />

 <Label Text="{Binding Multiplier, StringFormat=' x {0:F3}'}" />

 <Label Text="{Binding Product, StringFormat=' = {0:F3}'}" />

 </StackLayout>

 </StackLayout>

</ContentPage>

The SimpleMultiplierViewModel is instantiated in the Resources dictionary and set to the

BindingContext property of the StackLayout by using a StaticResource markup extension. That

BindingContext is inherited by all the children and grandchildren of the StackLayout, which in-

cludes two Slider and three Label elements. The use of the BindingContext allows these bindings

to be as simple as possible.

The default binding mode of the Value property of the Slider is TwoWay. Changes in the Value

property of each Slider cause changes to the properties of the ViewModel.

The three Label elements display the values of all three properties of the ViewModel with some

formatting that inserts times and equals signs with the numbers:

<Label Text="{Binding Multiplicand, StringFormat='{0:F3}'}" />

<Label Text="{Binding Multiplier, StringFormat=' x {0:F3}'}" />

<Label Text="{Binding Product, StringFormat=' = {0:F3}'}" />

For the first two, you can alternatively bind the Text property of the Label elements directly to the

Value property of the corresponding Slider, but that would require that you give each Slider a

name with x:Name and reference that name in a Source argument by using the x:Reference

markup extension. The approach used in this program is much cleaner and verifies that data is making

a full trip through the ViewModel from each Slider to each Label.

There is nothing in the code-behind file except a call to InitializeComponent in the constructor.

All the business logic is in the ViewModel, and the whole user interface is defined in XAML:

Chapter 18 MVVM 504

If you’d like to, you can initialize the ViewModel as it is instantiated in the Resources dictionary:

<local:SimpleMultiplierViewModel x:Key="viewModel"

 Multiplicand="0.5"

 Multiplier="0.5" />

The Slider elements will get these initial values as a result of the two-way binding.

The advantage to separating the user interface from the underlying business logic becomes evident

when you want to change the user interface somewhat, perhaps by substituting a Stepper for the

Slider for one or both numbers:

<StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Stepper Value="{Binding Multiplier}" />

</StackLayout>

Aside from the different ranges of the two elements, the functionality is identical:

Chapter 18 MVVM 505

You could also substitute an Entry:

<StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Entry Text="{Binding Multiplier}" />

</StackLayout>

The default binding mode for the Text property of the Entry is also TwoWay, so all you need to worry

about is the conversion between the source property double and target property string. Fortunately,

this conversion is automatically handled by the binding infrastructure:

Chapter 18 MVVM 506

If you type a series of characters that cannot be converted to a double, the binding will maintain

the last valid value. If you want more sophisticated validation, you’ll have to implement your own (such

as with a trigger, which will be discussed in Chapter 23).

One interesting experiment is to type 1E-1, which is scientific notation that is convertible to a dou-

ble. You’ll see it immediately change to “0.1” in the Entry. This is the effect of the TwoWay binding:

The Multiplier property is set to 1E-1 from the Entry but the ToString method that the binding

infrastructure calls when the value comes back to the Entry returns the text “0.1.” Because that is dif-

ferent from the existing Entry text, the new text is set. To prevent that from happening, you can set

the binding mode to OneWayToSource:

<StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Multiplicand}" />

 <Entry Text="{Binding Multiplier, Mode=OneWayToSource}" />

</StackLayout>

Now the Multiplier property of the ViewModel is set from the Text property of the Entry, but not

the other way around. If you don’t need these two views to be updated from the ViewModel, you can

set both of them to OneWayToSource. But generally you’ll want MVVM bindings to be TwoWay.

Should you worry about infinite cycles in two-way bindings? Usually not, because Property-

Changed events are fired only when the property actually changes and not when it’s merely set to the

same value. Generally the source and target will stop updating each other after a bounce or two. How-

ever, it is possible to write a “pathological” value converter that doesn’t provide for round-trip conver-

sions, and that could indeed cause infinite update cycles in two-way bindings.

Chapter 18 MVVM 507

A Color ViewModel
Color always provides a good means of exploring the features of a graphical user interface, so you

probably won’t be surprised to learn that the Xamarin.FormsBook.Toolkit library contains a class

called ColorViewModel.

The ColorViewModel class exposes a Color property but also Red, Green, Blue, Alpha, Hue,

Saturation, and Luminosity properties, all of which are individually settable. This is not a feature

that the Xamarin.Form Color structure provides. Once a Color value is created from a Color con-

structor or one of the methods in Color beginning with the words Add, From, Multiply, or With, it is

immutable.

This ColorViewModel class is complicated by the interrelationship of its Color property and all the

component properties. For example, suppose the Color property is set. The class should fire a Prop-

ertyChanged handler not only for Color but also for any component (such as Red or Hue) that also

changes. Similarly, if the Red property changes, then the class should fire a PropertyChanged event

for both Red and Color, and probably Hue, Saturation, and Luminosity as well.

The ColorViewModel class solves this problem by storing a backing field for the Color property

only. All the set accessors for the individual components create a new Color by using the incoming

value with a call to Color.FromRgba or Color.FromHsla. This new Color value is set to the Color

property rather than the color field, which means that the new Color value is subjected to processing

in the set accessor of the Color property:

public class ColorViewModel : INotifyPropertyChanged

{

 Color color;

 public event PropertyChangedEventHandler PropertyChanged;

 public double Red

 {

 set

 {

 if (Round(color.R) != value)

 Color = Color.FromRgba(value, color.G, color.B, color.A);

 }

 get

 {

 return Round(color.R);

 }

 }

 public double Green

 {

 set

 {

 if (Round(color.G) != value)

 Color = Color.FromRgba(color.R, value, color.B, color.A);

 }

Chapter 18 MVVM 508

 get

 {

 return Round(color.G);

 }

 }

 public double Blue

 {

 set

 {

 if (Round(color.B) != value)

 Color = Color.FromRgba(color.R, color.G, value, color.A);

 }

 get

 {

 return Round(color.B);

 }

 }

 public double Alpha

 {

 set

 {

 if (Round(color.A) != value)

 Color = Color.FromRgba(color.R, color.G, color.B, value);

 }

 get

 {

 return Round(color.A);

 }

 }

 public double Hue

 {

 set

 {

 if (Round(color.Hue) != value)

 Color = Color.FromHsla(value, color.Saturation, color.Luminosity, color.A);

 }

 get

 {

 return Round(color.Hue);

 }

 }

 public double Saturation

 {

 set

 {

 if (Round(color.Saturation) != value)

 Color = Color.FromHsla(color.Hue, value, color.Luminosity, color.A);

 }

 get

 {

Chapter 18 MVVM 509

 return Round(color.Saturation);

 }

 }

 public double Luminosity

 {

 set

 {

 if (Round(color.Luminosity) != value)

 Color = Color.FromHsla(color.Hue, color.Saturation, value, color.A);

 }

 get

 {

 return Round(color.Luminosity);

 }

 }

 public Color Color

 {

 set

 {

 Color oldColor = color;

 if (color != value)

 {

 color = value;

 OnPropertyChanged("Color");

 }

 if (color.R != oldColor.R)

 OnPropertyChanged("Red");

 if (color.G != oldColor.G)

 OnPropertyChanged("Green");

 if (color.B != oldColor.B)

 OnPropertyChanged("Blue");

 if (color.A != oldColor.A)

 OnPropertyChanged("Alpha");

 if (color.Hue != oldColor.Hue)

 OnPropertyChanged("Hue");

 if (color.Saturation != oldColor.Saturation)

 OnPropertyChanged("Saturation");

 if (color.Luminosity != oldColor.Luminosity)

 OnPropertyChanged("Luminosity");

 }

 get

 {

 return color;

 }

Chapter 18 MVVM 510

 }

 protected void OnPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 double Round(double value)

 {

 return Device.OnPlatform(value, Math.Round(value, 3), value);

 }

}

The set accessor for the Color property is responsible for the firings of all PropertyChanged events

based on changes to the properties.

Notice the device-dependent Round method at the bottom of the class and its use in the set and

get accessors of the first seven properties. This was added when the MultiColorSliders sample in

Chapter 23, “Triggers and behaviors,” revealed a problem. Android seemed to be internally rounding

the color components, causing inconsistencies between the properties being passed to the

Color.FromRgba and Color.FromHsla methods and the properties of the resultant Color value,

which lead to infinite set and get loops.

The HslSliders program instantiates the ColorViewModel between Grid.BindingContext tags

so that it becomes the BindingContext for all the Slider and Label elements within the Grid:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:toolkit=

 "clr-namespace:Xamarin.FormsBook.Toolkit;assembly=Xamarin.FormsBook.Toolkit"

 x:Class="HslSliders.HslSlidersPage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <Grid x:Name="mainGrid">

 <Grid.BindingContext>

 <toolkit:ColorViewModel Color="Gray" />

 </Grid.BindingContext>

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Label">

 <Setter Property="FontSize" Value="Large" />

Chapter 18 MVVM 511

 <Setter Property="HorizontalTextAlignment" Value="Center" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <!-- Initialized for portrait mode. -->

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <BoxView Color="{Binding Color}"

 Grid.Row="0" Grid.Column="0" />

 <StackLayout x:Name="controlPanelStack"

 Grid.Row="1" Grid.Column="0"

 Padding="10, 5">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Hue}" />

 <Label Text="{Binding Hue, StringFormat='Hue = {0:F2}'}" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Saturation}" />

 <Label Text="{Binding Saturation, StringFormat='Saturation = {0:F2}'}" />

 </StackLayout>

 <StackLayout VerticalOptions="CenterAndExpand">

 <Slider Value="{Binding Luminosity}" />

 <Label Text="{Binding Luminosity, StringFormat='Luminosity = {0:F2}'}" />

 </StackLayout>

 </StackLayout>

 </Grid>

</ContentPage>

Notice that the Color property of ColorViewModel is initialized when ColorViewModel is instanti-

ated. The two-way bindings of the sliders then pick up the resultant values of the Hue, Saturation,

and Luminosity properties.

If you instead want to implement a display of hexadecimal values of Red, Green, and Blue, you can

use the DoubleToIntConverter class demonstrated in connection with the GridRgbSliders program

in the previous chapter.

The HslSliders program implements the same technique for switching between portrait and land-

scape modes as that GridRgbSliders program. The code-behind file handles the mechanics of this

switch:

Chapter 18 MVVM 512

public partial class HslSlidersPage : ContentPage

{

 public HslSlidersPage()

 {

 InitializeComponent();

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(controlPanelStack, 1);

 Grid.SetColumn(controlPanelStack, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = new GridLength(1, GridUnitType.Star);

 Grid.SetRow(controlPanelStack, 0);

 Grid.SetColumn(controlPanelStack, 1);

 }

 }

}

This code-behind file isn’t quite as pretty as a file that merely calls InitializeComponent, but even

in the context of MVVM, switching between portrait and landscape modes is a legitimate use of the

code-behind file because it is solely devoted to the user interface rather than underlying business logic.

Here’s the HslSliders program in action:

Chapter 18 MVVM 513

Streamlining the ViewModel
A typical implementation of INotifyPropertyChanged has a private backing field for every public

property defined by the class, for example:

double number;

It also has an OnPropertyChanged method responsible for firing the PropertyChanged event:

protected void OnPropertyChanged(string propertyName)

{

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

}

A typical property definition looks like this:

public double Number

{

 set

 {

 if (number != value)

 {

 number = value;

 OnPropertyChanged("Number");

 // Do something with the new value.

Chapter 18 MVVM 514

 }

 }

 get

 {

 return number;

 }

}

A potential problem involves the text string you pass to the OnPropertyChanged method. If you

misspell it, you won’t get any type of error message, and yet bindings involving that property won’t

work. Also, the backing field appears three times within this single property. If you had several similar

properties and defined them through copy-and-paste operations, it’s possible to omit the renaming of

one of the three appearances of the backing field, and that bug might be very difficult to track down.

You can solve the first problem with a feature introduced in C# 5.0. The CallerMemberNameAt-

tribute class allows you to replace an optional method argument with the name of the calling

method or property.

You can make use of this feature by redefining the OnPropertyChanged method. Make the argu-

ment optional by assigning null to it and preceding it with the CallerMemberName attribute in

square brackets. You’ll also need a using directive for System.Runtime.CompilerServices:

protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

{

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

}

Now the Number property can call the OnPropertyChanged method without the argument that

indicates the property name. That argument will be automatically set to the property name “Number”

because that’s where the call to OnPropertyChanged is originating:

public double Number

{

 set

 {

 if (number != value)

 {

 number = value;

 OnPropertyChanged();

 // Do something with the new value.

 }

 }

 get

 {

 return number;

 }

Chapter 18 MVVM 515

}

This approach avoids a misspelled text property name and also allows property names to be

changed during program development without worrying about also changing the text strings. Indeed,

one of the primary reasons that the CallerMemberName attribute was invented was to simplify classes

that implement INotifyPropertyChanged.

However, this works only when OnPropertyChanged is called from the property whose value is

changing. In the earlier ColorViewModel, explicit property names would still be required in all but

one of the calls to OnPropertyChanged.

It’s possible to go even further to simplify the set accessor logic: You’ll need to define a generic

method, probably named SetProperty or something similar. This SetProperty method is also de-

fined with the CallerMemberName attribute:

bool SetProperty<T>(ref T storage, T value, [CallerMemberName] string propertyName = null)

{

 if (Object.Equals(storage, value))

 return false;

 storage = value;

 OnPropertyChanged(propertyName);

 return true;

}

protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

{

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

}

The first argument to SetProperty is a reference to the backing field, and the second argument is

the value being set to the property. SetProperty automates the checking and setting of the backing

field. Notice that it explicitly includes the propertyName argument when calling OnProperty-

Changed. (Otherwise the propertyName argument would become the string “SetProperty”!) The

method returns true if the property was changed. You can use this return value to perform additional

processing with the new value.

Now the Number property looks like this:

public double Number

{

 set

 {

 if (SetProperty(ref number, value))

 {

 // Do something with the new value.

 }

Chapter 18 MVVM 516

 }

 get

 {

 return number;

 }

}

Although SetProperty is a generic method, the C# compiler can deduce the type from the argu-

ments. If you don’t need to do anything with the new value in the property set accessor, you can even

reduce the two accessors to single lines without obscuring the operations:

public double Number

{

 set { SetProperty(ref number, value); }

 get { return number; }

}

You might like this streamlining so much that you’ll want to put the SetProperty and OnProper-

tyChanged methods in their own class and derive from that class when creating your own ViewMod-

els. Such a class, called ViewModelBase, is already in the Xamarin.FormsBook.Toolkit library:

using System;

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace Xamarin.FormsBook.Toolkit

{

 public class ViewModelBase : INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 protected bool SetProperty<T>(ref T storage, T value,

 [CallerMemberName] string propertyName = null)

 {

 if (Object.Equals(storage, value))

 return false;

 storage = value;

 OnPropertyChanged(propertyName);

 return true;

 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null)

 {

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

}

Chapter 18 MVVM 517

This class is used in the two remaining examples in this chapter.

The Command interface

Data bindings are very powerful. Data bindings connect properties of visual elements in the View with

properties of data in the ViewModel, and allow the direct manipulation of data items through the user

interface.

But not everything is a property. Sometimes ViewModels expose public methods that must be called

from the View based on a user’s interaction with a visual element. Without MVVM, you’d probably call

such a method from a Clicked event handler of a Button or a Tapped event handler of a TapGes-

tureRecognizer. When considering these needs, the whole concept of data bindings and MVVM

might start to seem hopelessly flawed. How can the code-behind file of a page class be stripped down

to an InitializeComponent call if it must still make method calls from the View to the ViewModel?

Don’t give up on MVVM so quickly! Xamarin.Forms supports a feature that allows data bindings to

make method calls in the ViewModel directly from Button and TapGestureRecognizer and a few

other elements. This is a protocol called the command interface or the commanding interface.

The command interface is supported by eight classes:

 Button

 MenuItem (covered in Chapter 19, “Collection views”), and hence also ToolbarItem

 SearchBar

 TextCell, and hence also ImageCell (also to be covered in Chapter 19)

 ListView (also to be covered in Chapter 19)

 TapGestureRecognizer

It is also possible to implement commanding in your own custom classes.

The command interface is likely to be a little confusing at first. Let’s focus on Button.

Button defines two ways for code to be notified when the element is clicked. The first is the

Clicked event. But you can also use the button’s command interface as an alternative to (or in addi-

tion to) the Clicked event. This interface consists of two public properties that Button defines:

 Command of type System.Windows.Input.ICommand.

 CommandParameter of type Object.

To support commanding, a ViewModel must define a public property of type ICommand that is then

connected to the Command property of the Button through a normal data binding.

Chapter 18 MVVM 518

Like INotifyPropertyChanged, the ICommand interface is not a part of Xamarin.Forms. It’s de-

fined in the System.Windows.Input namespace and implemented in the System.ObjectModel as-

sembly, which is one of the .NET assemblies linked to a Xamarin.Forms application. ICommand is the

only type in the System.Windows.Input namespace that Xamarin.Forms supports. Indeed it’s the

only type in any System.Windows namespace supported by Xamarin.Forms.

Is it a coincidence that INotifyPropertyChanged and ICommand are both defined in .NET assem-

blies rather than Xamarin.Forms? No. These interfaces are often used in ViewModels, and some devel-

opers might already have ViewModels developed for one or more of Microsoft’s XAML-based environ-

ments. It’s easiest for developers to incorporate these existing ViewModels into Xamarin.Forms if INo-

tifyPropertyChanged and ICommand are defined in standard .NET namespaces and assemblies ra-

ther than in Xamarin.Forms.

The ICommand interface defines two methods and one event:

public interface ICommand

{

 void Execute(object arg);

 bool CanExecute(object arg);

 event EventHandler CanExecuteChanged;

}

To implement commanding, the ViewModel defines one or more properties of type ICommand,

meaning that the property is a type that implements these two methods and the event. A property in

the ViewModel that implements ICommand can then be bound to the Command property of a Button.

When the Button is clicked, the Button fires its normal Clicked event as usual, but it also calls the

Execute method of the object bound to its Command property. The argument to the Execute method

is the object set to the CommandParameter property of the Button.

That’s the basic technique. However, it could be that certain conditions in the ViewModel prohibit a

Button click at the current time. In that case, the Button should be disabled. This is the purpose of

the CanExecute method and the CanExecuteChanged event in ICommand. The Button calls CanEx-

ecute when its Command property is first set. If CanExecute returns false, the Button disables itself

and doesn’t generate Execute calls. The Button also installs a handler for the CanExecuteChanged

event. Thereafter, whenever the ViewModel fires the CanExecuteChanged event, the button calls

CanExecute again to determine whether the button should be enabled.

A ViewModel that supports the command interface defines one or more properties of type ICom-

mand and internally sets this property to a class that implements the ICommand interface. What is this

class, and how does it work?

If you were implementing the commanding protocol in one of Microsoft’s XAML-based environ-

ments, you would be writing your own class that implements ICommand, or perhaps using one that you

found on the web, or one that was included with some MVVM tools. Sometimes such classes are

named CommandDelegate or something similar.

Chapter 18 MVVM 519

You can use that same class in the ViewModels of your Xamarin.Forms applications. However, for

your convenience, Xamarin.Forms includes two classes that implement ICommand that you can use in-

stead. These two classes are named simply Command and Command<T>, where T is the type of the argu-

ments to Execute and CanExecute.

If you are indeed sharing a ViewModel between Microsoft environments and Xamarin.Forms, you

can’t use the Command classes defined by Xamarin.Forms. However, you’ll be using something similar to

these Command classes, so the following discussion will certainly be applicable regardless.

The Command class includes the two methods and event of the ICommand interface and also defines

a ChangeCanExecute method. This method causes the Command object to fire the CanExecute-

Changed event, and that facility turns out to be very handy.

Within the ViewModel, you’ll probably create an object of type Command or Command<T> for every

public property in the ViewModel of type ICommand. The Command or Command<T> constructor re-

quires a callback method in the form of an Action object that is called when the Button calls the Ex-

ecute method of the ICommand interface. The CanExecute method is optional but takes the form of

a Func object that returns bool.

In many cases, the properties of type ICommand are set in the ViewModel’s constructor and do not

change thereafter. For that reason, these ICommand properties do not generally need to fire Proper-

tyChanged events.

Simple method executions
Let’s look at a simple example. A program called PowersOfThree lets you use two buttons to explore

various powers of 3. One button increases the exponent and the other button decreases the exponent.

The PowersViewModel class derives from the ViewModelBase class in the Xamarin.Forms-

Book.Toolkit library, but the ViewModel itself is in the PowersOfThree application project. It is not

restricted to powers of 3, but the constructor requires an argument that the class uses as a base value

for the power calculation, and which it exposes as the BaseValue property. Because this property has

a private set accessor and doesn’t change after the constructor concludes, the property does not fire a

PropertyChanged event.

Two other properties, named Exponent and Power, do fire PropertyChanged events, but both

properties also have private set accessors. The Exponent property is increased and decreased only

from external button clicks.

To implement the response to Button taps, the PowersViewModel class defines two properties of

type ICommand, named IncreaseExponentCommand and DecreaseExponentCommand. Again, both

properties have private set accessors. As you can see, the constructor sets these two properties by in-

stantiating Command objects that reference little private methods immediately following the construc-

tor. These two little methods are called when the Execute method of Command is called. The View-

Model uses the Command class rather than Command<T> because the program doesn’t make use of any

Chapter 18 MVVM 520

argument to the Execute methods:

class PowersViewModel : ViewModelBase

{

 double exponent, power;

 public PowersViewModel(double baseValue)

 {

 // Initialize properties.

 BaseValue = baseValue;

 Exponent = 0;

 // Initialize ICommand properties.

 IncreaseExponentCommand = new Command(ExecuteIncreaseExponent);

 DecreaseExponentCommand = new Command(ExecuteDecreaseExponent);

 }

 void ExecuteIncreaseExponent()

 {

 Exponent += 1;

 }

 void ExecuteDecreaseExponent()

 {

 Exponent -= 1;

 }

 public double BaseValue { private set; get; }

 public double Exponent

 {

 private set

 {

 if (SetProperty(ref exponent, value))

 {

 Power = Math.Pow(BaseValue, exponent);

 }

 }

 get

 {

 return exponent;

 }

 }

 public double Power

 {

 private set { SetProperty(ref power, value); }

 get { return power; }

 }

 public ICommand IncreaseExponentCommand { private set; get; }

 public ICommand DecreaseExponentCommand { private set; get; }

}

Chapter 18 MVVM 521

The ExecuteIncreaseExponent and ExecuteDecreaseExponent methods both make a change

to the Exponent property (which fires a PropertyChanged event), and the Exponent property recal-

culates the Power property, which also fires a PropertyChanged event.

Very often a ViewModel will instantiate its Command objects by passing lambda functions to the

Command constructor. This approach allows these methods to be defined right in the ViewModel con-

structor, like so:

IncreaseExponentCommand = new Command(() =>

 {

 Exponent += 1;

 });

DecreaseExponentCommand = new Command(() =>

 {

 Exponent -= 1;

 });

The PowersOfThreePage XAML file binds the Text properties of three Label elements to the

BaseValue, Exponent, and Power properties of the PowersViewModel class, and binds the Command

properties of the two Button elements to the IncreaseExponentCommand and DecreaseExpo-

nentCommand properties of the ViewModel.

Notice how an argument of 3 is passed to the constructor of PowersViewModel as it is instantiated

in the Resources dictionary. Passing arguments to ViewModel constructors is the primary reason for

the existence of the x:Arguments tag:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:PowersOfThree"

 x:Class="PowersOfThree.PowersOfThreePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <local:PowersViewModel x:Key="viewModel">

 <x:Arguments>

 <x:Double>3</x:Double>

 </x:Arguments>

 </local:PowersViewModel>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout BindingContext="{StaticResource viewModel}">

 <StackLayout Orientation="Horizontal"

 Spacing="0"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand">

 <Label FontSize="Large"

 Text="{Binding BaseValue, StringFormat='{0}'}" />

 <Label FontSize="Small"

 Text="{Binding Exponent, StringFormat='{0}'}" />

Chapter 18 MVVM 522

 <Label FontSize="Large"

 Text="{Binding Power, StringFormat=' = {0}'}" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Button Text="Increase"

 Command="{Binding IncreaseExponentCommand}"

 HorizontalOptions="CenterAndExpand" />

 <Button Text="Decrease"

 Command="{Binding DecreaseExponentCommand}"

 HorizontalOptions="CenterAndExpand" />

 </StackLayout>

 </StackLayout>

</ContentPage>

Here’s what it looks like after several presses of one button or the other:

Once again, the wisdom of separating the user interface from the underlying business logic is re-

vealed when the time comes to change the View. For example, suppose you want to replace the but-

tons with an element with a TapGestureRecognizer. Fortunately, TapGestureRecognizer has a

Command property:

<StackLayout Orientation="Horizontal"

 VerticalOptions="CenterAndExpand">

 <Frame OutlineColor="Accent"

 BackgroundColor="Transparent"

Chapter 18 MVVM 523

 Padding="20, 40"

 HorizontalOptions="CenterAndExpand">

 <Frame.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding IncreaseExponentCommand}" />

 </Frame.GestureRecognizers>

 <Label Text="Increase"

 FontSize="Large" />

 </Frame>

 <Frame OutlineColor="Accent"

 BackgroundColor="Transparent"

 Padding="20, 40"

 HorizontalOptions="CenterAndExpand">

 <Frame.GestureRecognizers>

 <TapGestureRecognizer Command="{Binding DecreaseExponentCommand}" />

 </Frame.GestureRecognizers>

 <Label Text="Decrease"

 FontSize="Large" />

 </Frame>

</StackLayout>

Without touching the ViewModel or even renaming an event handler so that it applies to a tap ra-

ther than a button, the program works the same, but with a different look:

A calculator, almost
Now it’s time to make a more sophisticated ViewModel with ICommand objects that have both Exe-

cute and CanExecute methods. The next program is almost like a calculator except that it only adds a

Chapter 18 MVVM 524

series of numbers together. The ViewModel is named AdderViewModel, and the program is called

AddingMachine.

Let’s look at the screenshots first:

At the top of the page you can see a history of the series of numbers that have already been en-

tered and added. This is a Label in a ScrollView, so it can get rather long.

The sum of those numbers is displayed in the Entry view above the keypad. Normally, that Entry

view contains the number that you’re typing in, but after you hit the big plus sign at the right of the

keypad, the Entry displays the accumulated sum and the plus sign button becomes disabled. You

need to begin typing another number for the accumulated sum to disappear and for the button with

the plus sign to be enabled. Similarly, the backspace button is enabled as soon as you begin to type.

These are not the only keys that can be disabled. The decimal point is disabled when the number

you’re typing already has a decimal point, and all the number keys become disabled when the number

contains 16 characters. This is to avoid the number in the Entry from becoming too long to display.

The disabling of these buttons is the result of implementing the CanExecute method in the ICom-

mand interface.

The AdderViewModel class is in the Xamarin.FormsBook.Toolkit library and derives from View-

ModelBase. Here is the part of the class with all the public properties and their backing fields:

public class AdderViewModel : ViewModelBase

{

 string currentEntry = "0";

 string historyString = "";

Chapter 18 MVVM 525

 …

 public string CurrentEntry

 {

 private set { SetProperty(ref currentEntry, value); }

 get { return currentEntry; }

 }

 public string HistoryString

 {

 private set { SetProperty(ref historyString, value); }

 get { return historyString; }

 }

 public ICommand ClearCommand { private set; get; }

 public ICommand ClearEntryCommand { private set; get; }

 public ICommand BackspaceCommand { private set; get; }

 public ICommand NumericCommand { private set; get; }

 public ICommand DecimalPointCommand { private set; get; }

 public ICommand AddCommand { private set; get; }

 …

}

All the properties have private set accessors. The two properties of type string are only set inter-

nally based on the key taps, and the properties of type ICommand are set in the AdderViewModel con-

structor (which you’ll see shortly).

These eight public properties are the only part of AdderViewModel that the XAML file in the

AddingMachine project needs to know about. Here is that XAML file. It contains a two-row and two-

column main Grid for switching between portrait and landscape mode, and a Label, Entry, and 15

Button elements, all of which are bound to one of the eight public properties of the AdderView-

Model. Notice that the Command properties of all 10 digit buttons are bound to the NumericCommand

property and that the buttons are differentiated by the CommandParameter property. The setting of

this CommandParameter property is passed as an argument to the Execute and CanExecute

methods:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="AddingMachine.AddingMachinePage"

 SizeChanged="OnPageSizeChanged">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="10, 20, 10, 10"

 Android="10"

 WinPhone="10" />

 </ContentPage.Padding>

Chapter 18 MVVM 526

 <Grid x:Name="mainGrid">

 <!-- Initialized for Portrait mode. -->

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="0" />

 </Grid.ColumnDefinitions>

 <!-- History display. -->

 <ScrollView Grid.Row="0" Grid.Column="0"

 Padding="5, 0">

 <Label Text="{Binding HistoryString}" />

 </ScrollView>

 <!-- Keypad. -->

 <Grid x:Name="keypadGrid"

 Grid.Row="1" Grid.Column="0"

 RowSpacing="2"

 ColumnSpacing="2"

 WidthRequest="240"

 HeightRequest="360"

 VerticalOptions="Center"

 HorizontalOptions="Center">

 <Grid.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

 <Setter Property="FontSize" Value="Large" />

 <Setter Property="BorderWidth" Value="1" />

 </Style>

 </ResourceDictionary>

 </Grid.Resources>

 <Label Text="{Binding CurrentEntry}"

 Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="4"

 FontSize="Large"

 LineBreakMode="HeadTruncation"

 VerticalOptions="Center"

 HorizontalTextAlignment="End" />

 <Button Text="C"

 Grid.Row="1" Grid.Column="0"

 Command="{Binding ClearCommand}" />

 <Button Text="CE"

 Grid.Row="1" Grid.Column="1"

 Command="{Binding ClearEntryCommand}" />

 <Button Text="⇦"

 Grid.Row="1" Grid.Column="2"

 Command="{Binding BackspaceCommand}" />

Chapter 18 MVVM 527

 <Button Text="+"

 Grid.Row="1" Grid.Column="3" Grid.RowSpan="5"

 Command="{Binding AddCommand}" />

 <Button Text="7"

 Grid.Row="2" Grid.Column="0"

 Command="{Binding NumericCommand}"

 CommandParameter="7" />

 <Button Text="8"

 Grid.Row="2" Grid.Column="1"

 Command="{Binding NumericCommand}"

 CommandParameter="8" />

 <Button Text="9"

 Grid.Row="2" Grid.Column="2"

 Command="{Binding NumericCommand}"

 CommandParameter="9" />

 <Button Text="4"

 Grid.Row="3" Grid.Column="0"

 Command="{Binding NumericCommand}"

 CommandParameter="4" />

 <Button Text="5"

 Grid.Row="3" Grid.Column="1"

 Command="{Binding NumericCommand}"

 CommandParameter="5" />

 <Button Text="6"

 Grid.Row="3" Grid.Column="2"

 Command="{Binding NumericCommand}"

 CommandParameter="6" />

 <Button Text="1"

 Grid.Row="4" Grid.Column="0"

 Command="{Binding NumericCommand}"

 CommandParameter="1" />

 <Button Text="2"

 Grid.Row="4" Grid.Column="1"

 Command="{Binding NumericCommand}"

 CommandParameter="2" />

 <Button Text="3"

 Grid.Row="4" Grid.Column="2"

 Command="{Binding NumericCommand}"

 CommandParameter="3" />

 <Button Text="0"

 Grid.Row="5" Grid.Column="0" Grid.ColumnSpan="2"

 Command="{Binding NumericCommand}"

 CommandParameter="0" />

Chapter 18 MVVM 528

 <Button Text="·"

 Grid.Row="5" Grid.Column="2"

 Command="{Binding DecimalPointCommand}" />

 </Grid>

 </Grid>

</ContentPage>

What you won’t find in the XAML file is a reference to AdderViewModel. For reasons you’ll see shortly,

AdderViewModel is instantiated in code.

The core of the adding-machine logic is in the Execute and CanExecute methods of the six ICom-

mand properties. These properties are all initialized in the AdderViewModel constructor shown below,

and the Execute and CanExecute methods are all lambda functions.

When only one lambda function appears in the Command constructor, that’s the Execute method

(as the parameter name indicates), and the Button is always enabled. This is the case for ClearCom-

mand and ClearEntryCommand.

All the other Command constructors have two lambda functions. The first is the Execute method,

and the second is the CanExecute method. The CanExecute method returns true if the Button

should be enabled and false otherwise.

All the ICommand properties are set with the nongeneric form of the Command class except for Nu-

mericCommand, which requires an argument to the Execute and CanExecute methods to identify

which key has been tapped:

public class AdderViewModel : ViewModelBase

{

 …

 bool isSumDisplayed = false;

 double accumulatedSum = 0;

 public AdderViewModel()

 {

 ClearCommand = new Command(

 execute: () =>

 {

 HistoryString = "";

 accumulatedSum = 0;

 CurrentEntry = "0";

 isSumDisplayed = false;

 RefreshCanExecutes();

 });

 ClearEntryCommand = new Command(

 execute: () =>

 {

 CurrentEntry = "0";

 isSumDisplayed = false;

 RefreshCanExecutes();

 });

Chapter 18 MVVM 529

 BackspaceCommand = new Command(

 execute: () =>

 {

 CurrentEntry = CurrentEntry.Substring(0, CurrentEntry.Length - 1);

 if (CurrentEntry.Length == 0)

 {

 CurrentEntry = "0";

 }

 RefreshCanExecutes();

 },

 canExecute: () =>

 {

 return !isSumDisplayed && (CurrentEntry.Length > 1 || CurrentEntry[0] != '0');

 });

 NumericCommand = new Command<string>(

 execute: (string parameter) =>

 {

 if (isSumDisplayed || CurrentEntry == "0")

 CurrentEntry = parameter;

 else

 CurrentEntry += parameter;

 isSumDisplayed = false;

 RefreshCanExecutes();

 },

 canExecute: (string parameter) =>

 {

 return isSumDisplayed || CurrentEntry.Length < 16;

 });

 DecimalPointCommand = new Command(

 execute: () =>

 {

 if (isSumDisplayed)

 CurrentEntry = "0.";

 else

 CurrentEntry += ".";

 isSumDisplayed = false;

 RefreshCanExecutes();

 },

 canExecute: () =>

 {

 return isSumDisplayed || !CurrentEntry.Contains(".");

 });

 AddCommand = new Command(

 execute: () =>

 {

 double value = Double.Parse(CurrentEntry);

Chapter 18 MVVM 530

 HistoryString += value.ToString() + " + ";

 accumulatedSum += value;

 CurrentEntry = accumulatedSum.ToString();

 isSumDisplayed = true;

 RefreshCanExecutes();

 },

 canExecute: () =>

 {

 return !isSumDisplayed;

 });

 }

 void RefreshCanExecutes()

 {

 ((Command)BackspaceCommand).ChangeCanExecute();

 ((Command)NumericCommand).ChangeCanExecute();

 ((Command)DecimalPointCommand).ChangeCanExecute();

 ((Command)AddCommand).ChangeCanExecute();

 }

 …

}

All the Execute methods conclude by calling a method named RefreshCanExecute following

the constructor. This method calls the ChangeCanExecute method of each of the four Command ob-

jects that implement CanExecute methods. That method call causes the Command object to fire a

ChangeCanExecute event. Each Button responds to that event by making another call to the CanEx-

ecute method to determine if the Button should be enabled or not.

It is not necessary for every Execute method to conclude with a call to all four ChangeCanExe-

cute methods. For example, the ChangeCanExecute method for the DecimalPointCommand need

not be called when the Execute method for NumericCommand executes. However, it turned out to be

easier—both in terms of logic and code consolidation—to simply call them all after every key tap.

You might be more comfortable implementing these Execute and CanExecute methods as regu-

lar methods rather than lambda functions. Or you might be more comfortable having just one Com-

mand object that handles all the keys. Each key could have an identifying CommandParameter string

and you could distinguish between them with a switch and case statement.

There are lots of ways to implement the commanding logic, but it should be clear that the use of

commanding tends to structure the code in a flexible and ideal way.

Once the adding logic is in place, why not add a couple of more buttons for subtraction, multiplica-

tion, and division?

Well, it’s not quite so easy to enhance the logic to accept multiple operations rather than just one

operation. If the program supports multiple operations, then when the user types one of the operation

keys, that operation needs to be saved to await the next number. Only after the next number is com-

pleted (signaled by the press of another operation key or the equals key) is that saved operation

applied.

Chapter 18 MVVM 531

An easier approach would be to write a Reverse Polish Notation (RPN) calculator, where the opera-

tion follows the entry of the second number. The simplicity of RPN logic is one big reason why RPN cal-

culators appeal to programmers so much!

ViewModels and the application lifecycle

In a real calculator program on a mobile device, one important feature involves saving the entire state

of the calculator when the program is terminated, and restoring it when the program starts up again.

And once again, the concept of the ViewModel seems to break down.

Sure, it’s possible to write some application code that accesses the public properties of the View-

Model and saves them, but the state of the calculator depends on private fields as well. The isSum-

Displayed and accumulatedSum fields of AdderViewModel are essential for restoring the calcula-

tor’s state.

It’s obvious that code external to the AdderViewModel can’t save and restore the AdderView-

Model state without the ViewModel exposing more public properties. There’s only one class that

knows what’s necessary to represent the entire internal state of a ViewModel, and that’s the ViewModel

itself.

The solution is for the ViewModel to define public methods that save and restore its internal state.

But because a ViewModel should strive to be platform independent, these methods shouldn’t use any-

thing specific to a particular platform. For example, they shouldn’t access the Xamarin.Forms Applica-

tion object and then add items to (or retrieve items from) the Properties dictionary of that Appli-

cation object. That is much too specific to Xamarin.Forms.

However, working with a generic IDictionary object in methods named SaveState and Re-

storeState is possible in any .NET environment, and that’s how AdderViewModel implements these

methods:

public class AdderViewModel : ViewModelBase

{

 …

 public void SaveState(IDictionary<string, object> dictionary)

 {

 dictionary["CurrentEntry"] = CurrentEntry;

 dictionary["HistoryString"] = HistoryString;

 dictionary["isSumDisplayed"] = isSumDisplayed;

 dictionary["accumulatedSum"] = accumulatedSum;

 }

 public void RestoreState(IDictionary<string, object> dictionary)

 {

 CurrentEntry = GetDictionaryEntry(dictionary, "CurrentEntry", "0");

 HistoryString = GetDictionaryEntry(dictionary, "HistoryString", "");

 isSumDisplayed = GetDictionaryEntry(dictionary, "isSumDisplayed", false);

Chapter 18 MVVM 532

 accumulatedSum = GetDictionaryEntry(dictionary, "accumulatedSum", 0.0);

 RefreshCanExecutes();

 }

 public T GetDictionaryEntry<T>(IDictionary<string, object> dictionary,

 string key, T defaultValue)

 {

 if (dictionary.ContainsKey(key))

 return (T)dictionary[key];

 return defaultValue;

 }

}

The code in AddingMachine involved in saving and restoring this state is mostly implemented in

the App class. The App class instantiates the AdderViewModel and calls RestoreState using the

Properties dictionary of the current Application class. That AdderViewModel is then passed as an

argument to the AddingMachinePage constructor:

public class App : Application

{

 AdderViewModel adderViewModel;

 public App()

 {

 // Instantiate and initialize ViewModel for page.

 adderViewModel = new AdderViewModel();

 adderViewModel.RestoreState(Current.Properties);

 MainPage = new AddingMachinePage(adderViewModel);

 }

 protected override void OnStart()

 {

 // Handle when your app starts.

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps.

 adderViewModel.SaveState(Current.Properties);

 }

 protected override void OnResume()

 {

 // Handle when your app resumes.

 }

}

The App class is also responsible for calling SaveState on AdderViewModel during processing of the

OnSleep method.

The AddingMachinePage constructor merely needs to set the instance of AdderViewModel to the

Chapter 18 MVVM 533

page’s BindingContext property. The code-behind file also manages the switch between portrait and

landscape layouts:

public partial class AddingMachinePage : ContentPage

{

 public AddingMachinePage(AdderViewModel viewModel)

 {

 InitializeComponent();

 // Set ViewModel as BindingContext.

 BindingContext = viewModel;

 }

 void OnPageSizeChanged(object sender, EventArgs args)

 {

 // Portrait mode.

 if (Width < Height)

 {

 mainGrid.RowDefinitions[1].Height = GridLength.Auto;

 mainGrid.ColumnDefinitions[1].Width = new GridLength(0, GridUnitType.Absolute);

 Grid.SetRow(keypadGrid, 1);

 Grid.SetColumn(keypadGrid, 0);

 }

 // Landscape mode.

 else

 {

 mainGrid.RowDefinitions[1].Height = new GridLength(0, GridUnitType.Absolute);

 mainGrid.ColumnDefinitions[1].Width = GridLength.Auto;

 Grid.SetRow(keypadGrid, 0);

 Grid.SetColumn(keypadGrid, 1);

 }

 }

}

The AddingMachine program demonstrates one way to handle the ViewModel, but it’s not the

only way. Alternatively, it’s possible for App to instantiate the AdderViewModel but define a property

of type AdderViewModel that the constructor of AddingMachinePage can access.

Or, if you want the page to have full control over the ViewModel, you can do that as well. Adding-

MachinePage can define its own OnSleep method that is called from the OnSleep method in the App

class, and the page class can also handle the instantiation of AdderViewModel and the calling of the

RestoreState and SaveState methods. However, this approach might become somewhat clumsy

for multipage applications.

In a multipage application, you might have separate ViewModels for each page, perhaps deriving

from a ViewModel with properties applicable to the entire application. In such a case, you’ll want to

avoid properties with the same name using the same dictionary keys for saving each ViewModel’s

state. You can use more extensive dictionary keys that include the class name, for example, “Adder-

ViewModel.CurrentEntry”.

Chapter 18 MVVM 534

Although the power and advantages of data binding and ViewModels should be apparent by now,

these features really blossom when used with the Xamarin.Forms ListView. That’s up in the next

chapter.

